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Chapter 1

Introduction

._,o-

Thin sheet flows have been a matter of research interest for many years. Sir

Geoffrey Taylor has published, a series of papers on the dynamics and stability of liquid

sheets, [1]. Dombrowski and Fraser have written a paper on the disintegration of

expanding cylindrical sheets, such as would be found in a fuel injector, [2]. Relate,.4 work

has been done by Crapper on capillary waves on fluids of infinite depth, [3]. As long ago

as 1879, Rayleigh published a paper on the capillary break-up of a cylindrical liquid jet in

air, [4J. Interest in thin sheet flows has recently been renewed due to their potential

application in space radiators.

1.1 - Historical Perspective

A classic illustration of the methods of hydrodynamic stability is Rayleigh's theory

of the break-up of a liquid jet in air, such as the formation of drops by a thin jet of water

from a faucet.. It had previously been shown that capillarity would lead to instability of a

round jet, because an axisymmetric deformation could decrease the surface area of the jet.

Rayleigh analyzed in detail the instabi/ity of a uniform basic flow of incompressible,

inviscid liquid within a cylinder;, the liquid having a free surface governed by its surface

tension. The jet was found to be stable to all non-axisymmetric modes, but is unstable to

axisymmetric modes whose wavelength is greater than the circumference of the jet.

Rayleigh's theory agrees well with experiments. Rayleigh a/so found that there is a
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recognized word, varicosity, to describe the axisymmetric instability. This is sometimes

called sausage instability now, [.q.

In the second paper of Geoffrey Taylor's series he discussed the waves on thin

sheets of fluid. He showed that capillary waves are of two Ends, symmetrical waves in

which the displacements of opposite sides are in opposite directions, and antisymmetrical

waves in which the displacements are in the sar0.e direction, as shown by Figure 1-1. Any

disturbance can be regarded as composed of these two types of waves. The

antisymmetrical waves were shown to be non-dispersive. The antisymmemcal waves in a

sheet of uniform thickness caused by a point disturbance were shown to appear as two

narrow line-like waves. The symmetrical waves were very different, they were highly

dispersive and were Vropagated much more slowly than the antisymmetrical waves.

Experimentally, a Point disturbance produces both kinds of waves simultaneously. The

Ii,

Symmetric Waves

r

Asymmetric Waves

Figure I-I Symmetric and Asymmetric Waves

.. ?
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symmetrica/waves in a sheet of uniform thickness caused by a point disturbance w'em

shown to appear as parabolas, [1].

In 1960, D. R. Brown carried out an experimental inves_gar/on of thin liquid sheet

flow in connection with a method of lacquer application known as curtain coating. In

c-,main coating, the coating material passes through a thin slit and a Liquid sheet is

In'educed. The width of the sheet is maintained by galide wires aiong the edges of the

sh_t, The minimum liquid flow rote required to maintain a stable sheet is discussed, and

the effec:s of the impingement of the sheet on a rapidly moving surface are described, [5].

The stability of a viscous liquid curtain falling down steadily under the influence of

gravity was investigated by S. P, Lin in 1980. A linear stability analysis was carried out

and it was found that only the spatially growing disturbances whose group velocity points

toward the u-_stream direction were unstable. A critical Weber number was found. Any

sheet formex:t with a Weber number less than the critical Weber number was found to be

unstable, [6]. This was in good agreement with the experimental results found by Brown.

1.2 - Space Application

One way of significandy reducing the mass of a space radiator is to eliminate the

containing walls for the working fluid. Thus the working fluid is exposed to the vacuum

condition of space. Such an external flow radiator will have a lower mass than a heat pipe

type mdiaror. Ease of deployment and near immunity to meteoroid damage are two other

advantages of external flow radiators.

Currently there are three different designs for external flow radiators. They are the

liquid droplet radiator (LDR), the liquid belt radiator (LBR), and the liquid sheet radiator

(LSR). The liquid sheet radiator uses a thin liquid sheet as the radiating surface. The sheet

may be as thin as 0.0015 in.

III
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The idea behind the design of the liquid sheet radiator is to have the greatest surf_ce

area for the leas: volume or mass. With a very thin liquid sheet the mass is very small,

while the surface area, both sides of the sheet, is quite Iarge, allowing for much more

specific surface area than the LDR or LBR. Also, being a single sh_t, the radiation of heat

from one droplet to another droplet is eliminated.

One of the advantages of the LSR is ease of desig'n. The mac,hining required for the

fabrication of _e narrow slits that are used in producing the sheet dces not require as much

precision as that for the fabrication of the many small holes for the liquid droplet radiator.

Also, the pump power will be less since the viscous losses for a sin_e slit are less than that

for many small holes. Collection of the liquid is also greatly simpl_ed since the sheet

coalesces to a single point, as will be shown later. The simpler desi__-n for the sheet

generator and coUector should result in a lower mass for these comt::onents, [7].

Due to its many advantages the LSR has been the subject of g:reat interest in recent

years. This has resulted in the need to fully understand the fluid dynamics and stability of a

thin liquid sheet.

1.3 - Introduction to Liquid Sheet Flow

A liquid sheet is formed by forcing the working fluid through a very thin slit. Since

the sheet is so thin, the surface tension has a very pronounced effect. The sheet edges are

pulled towards the center of the sheet, (see Figure I-2). This causes the sheet to take on a

triangu/ar form. Due to conservation of mass the fluid must collect in the so-called edge

cylinders that border the sides of the sheet.

In order to more fully understand the fluid dynamics of liquid sheet flow, a number

of analytical and experimental studies were carried out. The first analytical study, Chapter

2 Section 1, was to determine an analytical prediction for the sheet length over slit width

ratio for the liquid sheet. The second, Chapter 2 Section 2, was to determine the theoretical
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Figure 1-2 Phc:ograph of a Thin Liquid She.e:

cross-sectional shape of the edge cyik":ders.

In addison to the fluid dynam-cs of liquid sheet flow it is also of vital importance to

understand _he stability of the flow. Ti,nis is tile. focus; of Chapter 3. In Chapter 3, a linear

stability :real.S/sis is presented _,n a .qc)::-pl:mcr liqtaid jet. This analysis shows the possible

instability of the e.x..tge cylinders.
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"-'_ [:_'_" Chapter 4 has two main parts. In the first part, the experimental apparatus is

_.:g f' :i:_{,"7 described. In the second part, the formation of holes in the sheet is discussed and the

"_ }_2_-"_;} method of eliminating those holes is presented.

_°: Chapters 5 and 6 present the experimental procedures and the experimental resuIts,
; . "3

• .: ,_; , . ......_ .;:_,_ liqmd sheet and comparisons were made to the lb.eorencal predicuons presented in Chapter
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2. An elaborate photographic teci_mique was employed in order to determine the cross-

sectional shape of the edge cylinders. This experiment revea.Ied a ve..E¢- interesting

phenomenon, the edge cylinder cross-sectional shape oscillates between an elliptical and a

peanut-like shape, and the theoretical predictions are only valid in the 1.imiting case. A third

experimental study was performed on the effects of air drag on a liquid sheet.

1.4 - Introduction to Linear Stability Analysis

The essentialproblems ofhydrodynamic stabilitywere recognizedand formulated

inthcnineteenthcentury,notablyby Hclmholtz,Kelvin,Raylc.ighand Reynolds. The

mcthod of normal modes forstudyingtheoscillationsand instabilityof a dynamic system

of particlcsand rigidbodieswas N_mady highlydcvclopcd. A known solutionof Ncwton's

or Lagrangc'sequation ofmotion for thesystem was pcrturbed.The equationswcrc

linearized by neg/ecting products of the perturbations. It was further assumed that the

perturbation of each quantity could Ix) resolved into independent components or modes

varying with time t, like est for some constant s, which is in general complex. The values

of s for the modes were calculated from the linearized equations. If the real part of s was

found to be positive for any mode, the system was deemed unstable because a general

initial small perturbation of the system would grow exponentially in time.

Stokes, Kelvin, and Rayleigh adapted this method of normal modes to fluid

-- dynamics. The essential mathematical difference between fluid and particle dynamics is



thattheequationsof modonam partial rather than ordinary differentia/equations. This

diiTerenc¢ leads to many mathematical diz_culries in hydrodynamic stabiJJty, which have

been overcome for only a few classes of flow with very simpI¢ con.figurations.

',o ,
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Chapter 2

Theoretical Formulation

• ,o

The focus of this chapter is to analytically determine the sheet fen _.h over slit width

ratio and the cross-sectional shape of the edge cylinders. A better under'standing of the

problem at hand can be realized by referring to Figure 2-1, where the front and cross-

sectional views of _e liquid sheet are shown schematically. The sheet is formed by forcing

the working fluid :Jwough a very thin slit, oflen_h W 0 and _ickness _0- The sheet is then

pulled together by surface tension until the sheer coalesces at a length L. An orthogonal-

cartesian coordinate system centered at the top of the sheet in the middle of the slit is

ad_ted. The z-ads points in the vertical down direction, the x-axis points to the right

along the slit, and the y-axis goes in the direction of the thickness of the sheet. The

velocity, convention that u, v, and w denote the x, y, and z components of velocity,

respectively, will be used throughout the chapter. Moreover, s(x,z) represents the function

that wiil describe the cross-sectional shape of the edge cylinders. Using the above

mentioned notation, the two objectives of this chapter are to determine L/W 0 and s(x,z).

In the following section the effects of gravity and surface tension on the sheet will

be considered. First, the forces acting on the edge cylinder will be considered, resulting in

an expression for the velocity of the edge in the x-direction. Second, a macroscopic mass

balance on the entire sheet will be undertaken to determine the sheet length over slit width

ratio. Third, the sheet length over slit width ratio wilI be found by neglecting gravity and

compared to the ratio that included the effects of gravity. This analysis will result in

showing that the surface tension is the dominating force in the sheet and that the

gravitational force may be neglected.

"r

t,



,_ _ _,,_,., In the s_ond section the only forge acting on the sheet will be the surface tension

., _: force. Here, _e equations of continuity and motion will be solved to obtain the cross-

._ sectional shape of the edge cylinders. A number of assumptions will be made resulting in

:_ :_.,:_,.:. _:: the morion equation just being a Nalance of inertial forges and surface tension forces. The

_ .i:i_"".. i: objective is to develop a method for predicting the shape of the edge cylinder from knov,-ing

_i !_! " the area of the edge cylinder. This area, in turrb..can be found from the resuIts of the first

I- Wo

• |"

Z

Front View

/
/

y

Cross-Sectional View

Figure 2-1 Schematic of Thin Sheet How



2.1 - Derivation of the Sheet Length over Slit Width Ratio

2.1.1 - Development of the Governing Equations

_ Consider an arbitrary element of the edge cylinder with a thickness of d.z, as shov, na

in Fignzre 2-2. Let this element be considered a control volume. Assume it to be at pseudo-

steady state, that is, it will be considered steady when conservation of momentum is

applied and uns:eady when conservation of mass is applied. Furthermore assume it to be

unaffected by m--avity. Assuming a zero slope at the point where the cylinder connects to

the sheet, the surface tension force between the cylinder and the sheet is 0.dz for both the

front and the back of the sheet, therefore:

dF x = 2o'dz

Y

_rdz

_rdz

X

Figure 2-2 Differential Element of the Edge Cylinder
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edge.

Let ue be equal to the velocity at which fluid enters the control volume at the right

Applying a macroscopic mcmentum balance on this control volume yields:

or:.

d.F._= pu_:_

ou_ = dF____= 2or
r _ d27..

Therefore:

(2-0

If A c is defined as the area in the xy plane of the control volume, then applying a

macroscopic mass balance on the control volume yieIds:

Therefore:

dt (2-2)

If the principle of conservation of mass is applied to the entire sheet (see Figure 2-

1) then it can be shown tha¢ '.

pwoW0zo = pw(2& + WJ

Since the fluid is incompressible _d assuming x'w = XOwO,the above equation can be

written as:

woWoro = 2wA,= + w0x0W (2-3)

%
"_. It is known that the accelerafioa in the :-direction is due to gravity or:.

.?.'_.;'._... ,:,(:....... :, ¥ .. '-,%: , , ..:,:..-,..,...,.

Since the change with flax: c_"the sheet width is twice the edge velocity it may be

writtenthat:

".:.---<z,.:,, ...



dzz ¢w_
dt: = dt = g

Integrating, knowing that at t = 0; dz/dt = w0, gives:

_,- = w = gt + W 0
dt

Taking equation (2-3) and differentiating with respect to time yields:

,.

0 =2 dA,: 2A¢ _- dW-g/- w + + _ow0-g-

Differentiating a=_in yields:

0 2d2Acw+4d'&zdw+2Aed2w+'_w d2W"=-- _ _ 0 0_
dt 2 dr dt dt 2 dt 2

"_ But,

: d:-w _ dg = 0

i:

.... " 5,: gResulting in:

. -:.,*a._;_i dt z at ctt dt _

• i ._}' "Differentiating equations (2-2) and (2-4) with respect to time gives:

dt 2 p_:3

:';_:$ubstitufing equations (2-2), (2-5), (2-6), (2-8), and (2-9) into equation (2-7) yields:

.i

i
3 5.

• t*' • ,. ,

"t',g: '4,

=2 _ V p,_o + + +,owo ca-, 
i¢

:_lving this for drgdt gives:

= -4z2g

dt z (gt + wo) + Xowo

(2-5)

(2-6)

(2-7)

(2-8)

(2-9)

(2-'%

;, ,::.

:._ : .... .._._*",..:,,%.-. .

• i
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From this expression it is apparent that ifg = 0 the thickness is constant, as would be _e

case in space application. But, since g is greater than 0, d'r/dt is less than 0 and the sheet

!, becomes thinner.

Introduce the following dimensionless variables:

W- w.-_ z._=z;__tw0, w-=w.__- w---g'_- w-S' _ - w--? w0

Rewriting equation (2-10) in terms of the new dimensionless variables fields:

__-=_ a_

(2-__)

dt

Wog
+wo= 7wj +

Wog_ wo_ /

Or, in terms of the Froude number, defined as the ratio of inertia/forces to gravitational

forces:

Fr- w°2

gW0

One obtains:

d_:. 4_ z

dt Fr(l + _I_r + I))

For the special case of small t/Fr it is permissible to neglect it, giving:

(2-I2)

Rearranging and integrating resu/ts in an equation for _ as a function of_.

(2-13)

tn_-_l=-±?+e
x Fr

Using the boundary condition that at t = 0; _ = 1 it can be seen that c = -I and:

,%

',¢'.,_,'-,.., , ..' .... '... '/-:s.';_a;,_."_' ' •

...... _, ,:._ ,_.._-' !_a,__ ,. .,..; ±
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Fr i_ I)= 4 (_ In_-

Wridng equation (2-4) in terms of the previous dimensionless variables results in:

(2-I-I)

dW

w_pxo_

Incorporating thc Weber number, def'med as the m6o of inertial forces to surface tension

forces,

!

'_,4.

We = 9w°'°
cr (2-I5)

one obtains.

di (>16)

If equation (2-13) is divided by equation (2-16) an expression for d'_/dW can be

obtained.

dx dt = -az-'2

dtdW "a_Fr(l+
VWe_

This can be integrated to find W(z)

dW Fr(1 +

f(1 +_d_=_fa w_-5r2

W =-£r--(c. 32._-_/2- 2_'m j

Using the boundary condition that at W = I; _ = 1, it is found that:



(2-I7)

Therefore:

Writing equation (2-6) in terms of the dimensionless variables introduced earlier,

_. , ,°

• ,),)-x;rt,,_,,<,_1 +,'_,,,_, ,¢d,l t. ''_) .... .k,.,._;_ _-"

yields:

Integration yields _(t)"
L

-=.. f /+-+)• a_.": r

'?_':)_- Applying the boundary condition, at t -- O; _ - O, results in c "- O, therefore:

+

. :._=; In order to f'md the sheet length over slit width ratio, L/W 0, equation (2-17) should

il _. be solved for% numerically when W = 0. This value for_ can then be plugged into

i_ equation (2-14) to find t. Finally, the value fort can be plugged into equation (2-18) to

? find _. The resulting value for E is the sheet length over slit width rado for the given How

£_ parameters.
:, , The value for LJW 0 can be determined much more easily and without the aid of the

•.,_ computer if gravity is neglected, as is the case in space api_licafion. As was shown before,

;>_' . ..,:..
[. , . ._>_, ,_ ,

,. ._:.< _.',),,¢:,_-_ .. .



•-_._. _'. ifg = 0 thendT,/dt= 0,and consequently_ = I throughoutthesheet.Thereby equation(2-
._._ ,,

16) can be written as:

-,2

'i

This can be integrated to find W as a function oft:

W=-   Vei+c

From the boundary condition, t = O; W = 1, it can be seen that c = 1 and:

W_=-_e t + 1

Now, W can be set equal to zero to solve for t, _ving:

Since, when g = 0 the Fmude number is equa/to infinity, equation (2-18) may be rewritten

as:

Therefore:

Therefore, the LtW 0 ratio in zero gravity, is simply equal to _f_.

(2-19)

2.1.2 - Computer Solution

The Fortran pmgrarn FLUDY'N has been written to compute the L/W 0 ratios for a

typical range of F-roude and Weber numbers. This program computes the LAV 0 ratios both

including the effect of gravity and neglecting it. The results of this program have shown a

?

...... ,. :....,,,._,a, ............ =' "-,';' "Z .'_: ......
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negligible difference (<0.1%) in the calculaw.d L:W 0 ratios i/'gravit'y effects are considered.

For this reason, the rest of the ca/culadon for the cylinder cross-sec6onal shape sha.lI be

done by ne_ec6ng the force of gravity.

The text of FLUDYN can be found in Appendix B. Figure 2-3 shows how W and

vary with _ for a Weber number of 20. This shows how the sheet becomes thinner on the

way down and how it keeps a basically trian_ll_ shape under the influence of gravi .t-y.

The choice of Weber number _ual to 20 was to show the sheet thinning, as the Weber

number ge:.s ,ki_er this effect becomes less and less. Figure 2-4 shows the sheet lea_.h

over slit width ratios versus the Weber number. These were calculated without the effect of

gravity. Those values that were calculated with the effect of graviLy could have been

plotted but the difference wouId not have been noticeable.

t

i

f
i

2.0

Dimensionless VerticalPosition, z

Figure 2-3 Sheet Width and Thickness vs. Vertical Position for We = 20.0
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Figure 2-4 Sheet Lengtba'Sheet Width Ratio vs. Weber Number

2.2 - Derivation of the Edge Cylinder Cross-Sectional Shape

The full equations of continuity and motion, including the surface tension pressure,

are as follows (see Appendix A):

Continuity:

Motion:
a
_-_v= -V.pvv- V(Pa+ PSI').-V.x+ pg

Several assumptions need to be made to simplify these equations.

1) The flow is steady state;

2) The fluid is incompressible;

3) Gravity is neglected;

(2-:o)

(2-2I)

,_,.,", ,_" ," •

,'b: ' '. -:, . .
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4) The fluid is inviscid;

5) Air pressure .._._-adient is neglected;

6) The flow is irmtariona/;

As a consequence of these assumptions,
8p

=o

and the governing equations reduce to,

ConfinuiLy:

Motion:

Q = corl.stant

g=z=0

VP, = 0

Vxv =0

V'v=O

V. vv + VPs.___._/_r= 0

P

Through the use of vector identifies, the equation of continuity, ahd the in-otationality

assumption, the first term in the equation of motion can be simplified.

Therefore,

Continuity:

Motion:

V.v=O
(2-22)

lVv2 +
2

VPsT = 0

P (2-23)

, i ¸¸



2.2.1 - Integral Formulation of the Continuity Equation

Consider Figure 2-5 shov,-ing a typical cross-sectional sha_ and the coordinate

system to be used. The function s(x,z) describes the cross-sectional shape. The function

r(z) is essentially the width of the edge shape, and is defined as the point where s = x0/2

and u = -ue. _ ...

Y

_o/2-

I
-7

"_ Lie

•d "2x

X

Figqxre 2-5 Typical Edge Cylinder Cmss-Sectionad Shape

Expanding the continuity equation for this control volume yields:

Integrating equation (2-24) from 0 to s over y gives:

(,-2'.,)

or:.

• k .... .,,
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fo' fo'_-_ (udy) + _-_(vdy) = 0

(2-25)

The second integral in equation (2-0_..5)may be directly inte_ate2,. Kno_-ing that v at y = 0

is equal to 0 due to the symmetry of the sheet,

_0s _ (vdy) = v.s.: Vy = 0 vs
uy

(2-26)

The first hntegrai in equation (2-25) may be evaIuated throu_ the use of LeibrlitZ'S rule.

If (u) is defined as the average x-component of velocity over y, t.hen:

and,

fo s o_sff_ (udy) = 3-_s(u)" us _-x

Substituting the integrals in equations (2-26) and (2-28) into the integrated continuity

equation, equation (2-_), gives:
O 3s

a--7s(u)-u, v,=O

Since s = s(x,z) it may be written that:

It can be seen that for this case:

dt Ox_dt! _ztdt/

dX _-, Us
dt

dz = ws = WO
d_

(2-27)

(2-28)

(2-29)

''T
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ds dv

dt d:

(2-3o)

If equation (2-3 I) is integrated from 0 m x it is f_

(2-31)

(2-32)

The first integral in e.qua_on (2-32) may be dire,_.-_ knowing that at x = 0;

(u) = s = 0. Therefore:

'it

(2-33)

Tt_e second integral in equation (2-32) may be e_gh the use of Liebnitz's role.

i%
_I"t_

fo x _s

If equations (2-33) and (2-34) are substituted back:xm=aion (2-32) it yields:

(2-34)

(2-25)

s •

.:Li ,. i ....... ,



5.:_- IfA is defined as the cross-sectional area of the sheet from x = 0 to x = x for any z

and

sdx

IrA c is equaI to the cross-sectiona.l area of the edge cylinder then:

A¢= sdx

If the equation (2-37) is applied with x = r, refer to Figure 2-5, then:

A=A_

_ wodA_
2 dz

Therefore:

'_o,,/ __2m_dz = d_
V pwo_o

'Z0_We dz = dAc

Equation (2-39) can be integrated giving:

(2-36)

(2-37)

(2-38)

(2-39)

= "C0"_C Z + C

,_- i • , ,, ..



24

iK._wing that when z = O; Ac = 0 it can be seen that c = 0 and:

!.2 - Formulation of the/vIorion Equation

The mot/on equation can be v,_tten for any two points on the surface of the sheet.

2

(242)
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La /J

'to

2Rstag

From the continuity equation it was shown that:

(2-47)

.,..,_: U, = xo dz = 1 dz2s dA,: ri dA_
-_ dz dz
• 'if,,

",j2

":. l[it is assumed that the cross-sectiona/shape keeps a similar form for all z, then the

'd_mitions for tim cross-sectional area of the sheet and the cross-sectional area of the edge

_'_nders may be scaled by r,or:...
.° _ro_ .

-'r.

_:,, -,

A=2r (}_l(x)
JO

(2-:'0)

.... z-. _ -&i,,_._.._r,.°..;laq.,,_.._,_.,_.a..,

(2-51)
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.2.3 - Three Possible Simplified Solutions

':,-,'. - The problem still remains to solve fort I as a function of_ and _. It would be

easiest if all the z-dependence were removed. That is, to be able to solve for rl as a

function of { for any given _c- The only place where any z-dependence remains in this

equation is in the O_q/8_ 2 term. "I_ree simplified solutions to this problem will be

considered. In the first simplified solution, (i), this term will be neg!ected. In the second

simplified solution, (ii), this term will be set equal to a constant. In the thirdsimplified

solution, (iii), this term is set proportional to the other second partial derivative term, that

is,

- ._,, i)--_--_--_= 0

aq
, ii) _ constant

Since, cases (i) and (ii) can be regarded as limiting cases of the' more general case (iii), the
• ,j-

;:_i solution for this case will be considered first.

_ : Taking assumption (iii) and substituting into equation (2-58) yields:

(2-59)

This is a second order, non-linear, ordinary, differential equation which may be solved for

1"Ias a function of _ for any Ac- The boundary conditions on this equation are as follows:

1) at _ = 0, rl = 0 and drl ---),,*

2) at _ = ?, 1"1= 1 and drl = 0
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The solufion can be found by using a fourth order Runge-Kuvm technique. The
i"

algorithm uses what can be thought of as a shooting technique. 'kgtLstag and c_are free.

variables. Knowi.ng Ac, '_0/Rstag and a are selected. Beginning at 5, = 0, where rl = 0, the.

algorithm calculates rI at A_ and from that calculates rl at 2A{ and so on. The program is

; .;,:,'2,....

allowed to shoot until q passes through a minim.urn. This point is = This insures a zero

slope where the edge cylinder connects to the sheet. Thus the first part of boundary

condition I and the second part of boundary condition 2 will always be satisfied. The next

step in the routine is to insure that the proper z0/Rstag and 0_were se!ected.

First, the value of r1 at _ = ? is checked to see if it is equal to 1. If it is not, the

value for cz is changed and the algor!finm is started again. This continues until the value of

1"1at ? is equal to 1. Second, the value of A at { = _ is choked to see. if it is equal to A c. If

it is not, the value for "t(jRsmg is changed and the algorithm is started over again. This

most often results in o: being changed again, but eventually both conditions are satisfied.

This satisfies the Fn'st part of boundary condition 2 and bound2aw, condition 3.

Due to the second part of boundary condition I, the second point, rl(A_), must be

found by an analytic approximation. For small {, A is approximately equal to zero, and

equation (2-59) reduces to:

The solution to this equation is:

/ and

d_ 2 2Rstag (1 + o_) (2-6O)

n = (t +o0 R,,,,
'_o (2-61 )
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(2(l+c_)R,,_ )
d.__.q= g - _

dS, rl (2-62)

The Fortran program SHAPE has been written to solve equation (2-59) using these

boundary conditions and the approximations for small _. The listing of this program can

be found in Appendix B. The resuIts of running the SHAPE program ,"or a number of

Av's are shown m'-aphically in Fi_m.n-e 2-6. Fig'm:e 2-7 shows that there are only specific

values of c_ and _O/R.smg that can exist for any given A c. These two quantifies quickly

diverge as A c approaches 0. For this reason, results for Ae's less then 40 were unable to

be obtained. One interesting note is that if assumption (i) had been used it would have been

equivalent to setting ot equal to 0 in this solution. As can be seen from this gaph, the only

Ac at which Lhe bounda.ry conditions could be satisfied had this te.qn been neglected is

approximately 454. For this reason it is apparent that assumption (i) v,'ould have been

invalid. Figure 2-8 shows how the quantities rlmax and ? vary with A c. rlmax is the largest

value rl reaches in the cross-sectional shape and represents half of the maximum thiclmess

of the cylinder. Figure 2-9 shows the ellipticity of the end cylinder. T'r, is is par'dcularly

e,,
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Figure 2-6 Cross-Sectional Shape of the Edge Cylinder for Case (iii)
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Figure 2-7 z0/Rstag and o_vs. Dimensionless Cross-Sectional Area for Case (ill)
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Figure 2-8 rlmax and _ vs. Dimensionless Cross-Sectional Area for Case (i_i)
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Figure 2-9 Ellipticity vs. Dimensionless Cross-Sectional Area for Case (iii)

g in that it shows for small areas the cylinder is wider then it is thick, but for

areas _e cylinder approaches a more circular cross-section, which would have _n

y expecze&

Taking assumption (ii) and substituting into equation (2-58) yields:

d2rl = 1 I-_ (X_&__-I +/drl/21. Xo ]rl +/d_l12_. Q
,:i,¢ 2Ln ,WL _,d_,/J e'._=_JL !,dg/J

(2-63)

uation is solved similarly to the previous one. The method is the same and ",-he

conditions are the same, the only difference is the two free constants are now

and Q. The second point rl(A_) still has to be found using an analytic

If A and Q are set equal to zero in equation (2-63) it yields:

".. ;}, ; :,.

,.4.,_'ai_,a, ....
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d,
(2-64)

The solution to t_his equation is:

,L_0_1,_
(2-65)

and

(2Rstag _ _)drl_t

d_, 1"I (2-66)

The Fora-an program SHAPE2 has been written to solve equation (2-63) with the
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Figure 2-10 Cross-Sectional Shape of the Edge Cylinder for Case (i.i)
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Figure 2-11 z0/Rst.ag and Q vs. Dimensionless Cross-Sec_ional Area for Case (ii)
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same boundary conditions as before and these approximations for small 5=. The listing of

this program is aJso appended. Figure 2-10 shows the results of SI--La,PE2 when it was ran

for a number of Ac's. Figure 2-11 shows there is onIy one specific _0/1_tag and Q for any

given A c. This is also in agreement with the previous solution in that if assumption (i) was

used the only value of A c where the boundary conditions could have been satisfied was

454. Figure 2-12 shows how qmax and _ vary, .with A c. This is quite peculiar where it

shows that for Ac's less then 497 a de,crease in area actually produces an increase in _. This

is definitely not to be expected. The computer solution became quite unstable for small

values of A c, for this reason, no values were obtained for Ac's less then 400. Figure 2-13

shows the ellipticity using assumption (ii). This is quite unexpected, for Ac's _eater

tSl

e"
.o

¢.)

¢",1

"6
"1:1

2.50

2.00

1.50

1.130

0.50

i i

Dimensionless Cross-Sectional Area, _,.
c

1.0

Figure 2-13 Ellipticity vs. Dimensionless Cross-Sectional Area for Case (ii)

then 497 the cylinder becomes thicker than it is wide. This is very apparent in Figure 2-10

where the curve corresponding to an A c of 497 is dashed and the curves below it have a
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• large E This is v_--y, different then case (iii) where the cylinder approached a circular shape

_: for Iarge Ac's. For these reasons assumption (ii) wiiI have to be discarded and assumption

accepted as the best of the three simplified solutions.

With assumption (iii) being accepted as a physically possible solution, all that

tx,mains is to determine A e and run the SHAPE program for this value. It was shown

earlier that: ...

_=2A,:
_0 (2-56)

A,: = xOZ_e (2J40)

2z

(2-67)

iFmm Chapter 2, Section 1 it was shown that:

i_

W0

'.] :ubstitutingequation (2-19) into equation (2-67) gives:
-"

,'_. X_ = w°---tz
_ T,0L (2-68)

:.._th this expression, all that has to be known is the dimensions of the slit, the length of the

•'_lheet, and how far down the sheet the shape is desired to be known to calculate A'c- Once

'*this is known, the program SHAPE is ran and the output describes the theoretical cross-

_ilitetional shape.

(2-19)

..... w-._ ....... ......_; L..> .a .. , .... ,,'. ; _ ..
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Chapter 3

Stability Analysis

*b

_',,e fc.cus of this chapter is to analytically predict the stability, of a non-planer, ,,kin

liquid shee; It has already been shown by Geoffrey Taylor [1] t.,hat a perfectly planer

liquid shee: ;.s completely stable. It has also been shown by Rayleigh [4] that a cylind.Kcal

jet is unstab!e to an asymmetric disturbance. Unlike Taylor's work, the sheet in this study

is not pe:':.2emdy planer and does not have a zero ve!ocity throughout in the transverse

direction. _':e sheet has curvatm"e, particularly in the edge cylinders and also in the sheet

itseK due to slit defects. With this in mind, this particular analysis may be considered a

combinar:'on of Taylor's and Rayteigh's work.

By ne_ecting gravity the velocity field to be considered is the following:

V _ u(x,y,z), v(x,y,z), w0

Without loss of generality a Galilean transformation may be made to reduce the z-direc'6on

velocity to rest, leaving:

V = u(x,y,t), v(x,y,t); w = 0

Assuming an incompressible fluid, the continuity equation may be written for this flow

field as:
Ou

Assuming h-rotational flow, it may be written that:

I.ntrtx:lucing a velocity potential to satisfy the irmtational assumption,
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u = 3-'x-x'v =3y (3-I)

and substituting it into the continuity, equation .vie!ds the two-dimensional Laplace equation.

32_ 3z0

3X2 3Y 2 (3-2)

The first boundary condition that the flQw field must satisfy, is the kinematic

condition: that the fluid particle's y-direction velccit'y must be equal to the motion of the

free surface, or mathematically since s = s(x,t):

ds 3s 3StcLx_

but,

therefore:

=_-+ 3×/3xL (3-3)

The second boundary condition is obtained by applying the unsteady Bemoulli

equation including surface tension.

(__.) __1 [u 2, +
o{,

Substituting for u s and vs gives:

32s

3x 2
= constant

i,

¢,

_2S

+2 I1"_), + _ "_l 13s_P 12 =constant

.' I'"

i

(3-4)
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The flow on the sheet surface must satis:'y, equation (3-2) and the boundary, conditions,

(3-3) a_nd(3-4).

It" _ and so are the solutions to these equations, a small perrm-bation or disturbance

and As may be added to these solutions as follows:

:' _ = _o(x,y) + AqS(x,y,t) (3-5)

s = s0(x) +._s(x,t) (3-63

values for 0 and s may be subsrim:ed into equation (3-2) to obtain the disturbance

_-! . 7.

/ "_:_'

t

a--=(oo+,,0)+ +
_x 2 _y2

c920o 82Ao _200 _22_0
_+ + '- +_=0

: " " ax 2 ax: ay 2 ay 2

_:, the terms that are identically z_m by equation (3-2) leaves:

'{7
•,_' " _ +--=U ,

:[_ _x 2 _y2 (3-7)

_. Equations (3-5) and (3-6) may also be substituted into the boundary conditions.

ij._d_Stu_g equations (3-5) and (3-6) into equation (3-3) yields the following.

, gl"

:!:C ,(

:, [[

+_ ay ],--_- _gt +[_x _-_-xJ, -_-_x_-a-_x],+__x_-_-xJ,+_-_x['_-£J,J

,"._.terms that are identically zero by equation (3-3) can be removed from the above

,Jfltiition. By the assumption that A_ and As are small, the last term in the above ecuation

be neglected, thus resulting in a linear equation in z_ and As.
_r#,

,4!i,.... .
. _ :..:""---'-- ..

,_: • .: .

.! .[

q,.

il
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where o is the frequency and k is _ven by the following relation:

where k is the wavelength. These wavelike forms may be substituted into the disturbance

equation, equation (3-7), and into the boundary conditions, equations (F-8) and (3-9). The

'.resu/_g equations may then be solved for o_. ff there is a positive ima_nary part to co then

¢initially small disturbance will ___ow exponentially with time causing the solution to be
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In the symmetric case, the y-velocity on the back surface of the sheet is the

I

Symmetric Case

Y

Asymmetric Case

Figure 3-1 Schematic of the Symmetric and Asymmetric Waves

2) Asymmetric Ca.se

V$ "-" V. S

..5':'

Y

'_ Xr

-s (3-16)

o_posite of that on the front surface. In the asymmetric case, the y-velocity on the back

surface of the sheet is equal to that on the front. These two cases are shown in Figure 3-1.

The boundary conditions for these two cases are as follows.

1) Symmemc Case

V$ "" - V. s



For c_e 1, the symmetric case, boundary condition (3-16) can be applied to

equation (3- I5), giving:

(3-17)

¢ __!_..J +(_o_h(k_)÷_n_ks)e_-,0,1---¢_af_I -(_,_os_-k_)÷c_s_._-_-k_)_(_-O.,N.)

• _U_/.•. $

The fu-,s: terms on both sides of this equation are equal from equation (3-16). Rewriting

using trigonometric identities gives:

(cicosh(ks) + c2sinh(ks))e ':(kx" _) = - (clcosh(ks) - c2sinh_ks))e i(kx" cot)

Simplifying yields:

C 1 = - C 1

Therefore, for the symmetric case, c 1 must be equal to zero. Now if c 2 is set equal to As?.,

the amplitude can be written as:

A

q_= Asycosh(k"y) . Symmetric Case (3-18)

For case 2, the asymmetric case, boundary condition (3-17) can be applied to

equation (3-15), yielding:

[_O{_--_'Y)s+ (ClCOsh(ks) + c2sinl_ks))ci( kx" _') [/o*O '_| (ClCOSh(-ks) + c2sinh(-ks))ei( kx_-_-_-yj.+

According to boundary condition (3-17) the first term on both sides of this equation are

equal. Rewriting with the use of trigonometric identities gives:

(ClCOSh(ks) + c2sinh(ks}}e i(kx" _ot)= (ClCOsh(ks) - c2sinh(ks))e _(_" ca)

Simplifying gives:

C2 = -C2
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Therefore,for theasymmetriccase,c2must be equal to zero and if c 1 is set equal to Aasy, it

yields:

= Aasysinh(ky) Asymmetric Case (3-I9)

The wavelike forms may also be applied to the boundary conditions. If equations

(3-10) and (3-11) are applied to equation (3-8) it _ves:

e_-_) a0 ^._ • ^.=_e_-'q-,,.,,)+s_.(_,-_q_)

Dividing our the exponentials and multiplying by i _ves:

ao __o, I-g£]/Ox'_'_
(3-20)

If _uations (3-10) and (3-11) are applied to equation (3-9) it yields:

(_x0)f" _e_(_-'°'XikF
(a_ol(a¢'l -,oo. -0

Simplifying yields:

I l-_x)y

-0

(3-21)

Simaltaneously substituting equation (3-18), for the symmetric case, into both

boundary conditions, equations (3-20) and (3-21), at y equal to so yields:

and

ikA_xsinh(kso) = _m- u,.o_k - (_-_.A,ycOsh(kso)

- imA_osh(kso) + iku,,oA,_osh(kso) + kv, oA,xsinh(kso) + o" _k :z

./asol:i _/_' o,

Solving equation (3-22) for _ and substituting into equation (3-23) fields:

(3-22)

(3-23)
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COP = CO- ku_o co

,.,
÷f sol--

p'=p t _-g_-)/ =p

Therefore, equations (3-200 and (3-29) reduce to:

p Syrr_emc Case (3-30)

- k3crcotffkz/= 0
p -_2/ Asymmetric Case (3-3 I)

These two equations clearly have two real roots each. Therefore, this analysis predicts

complete stability for any disturbance in the flat area of the sheet. This is in agreement with

the work done by Taylor. It is possible in this case to solve these equations for co and

consequently predict the phase velocity for each case.

Solving equations (3-30) and (3-3 I) for co yields:

P Symmetric Case (3-32)

p

Thus, the wave velocities can be calcu/ated as:

Asymmetric Case (3-33)

4Csy= _ = P

where Csy and Casy are the symmetric and asymmetric wave velocities, respectively. T_ddng

the limit as z goes to zero results in:
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2V p_ k
(3-34)

tan_= t_
WO

Thus, for a Iong sheet, high w0, these two relations can be simpli_l _o:

_= U._..._e
WO

and

Therefore, for a long sheet the asymmetric waves are parallel to t_,,_ _.¢t edge. 'I_

velocity of the symmetric waves is st/d/a function of the waveleng,_J o¢ _¢ distu_ance.

Therefore the symmetrica/waves appear as a set of parabolas on t_ #_¢1,

Figures 3-2 and 3-3 show actual photographs of the sheet, jW pl_re 3-2 waves are

clearly visible that are para/del to the edges of the sheet. These at_ te,/,c,r,c_tive of _.he

asymmetric waves. In Figure 3-3, there is clearly a set ot'parabol_ _It,',_ wave_

emanating from a single point. These are representative of the syn'X;',_//_ wz'/¢._,

(3-37)

_t.

_2+, t¢ ,. .

But if _e a.ag/e the sheet edge makes with r.he z-direction is V then:

sin_tr'=_.-_-- (3-365
WO

The velocity of the symmemcaJ waves is sti./1 a function of the wavelength. The velocity of

the asymmetrical waves is independent of the wavelength and equal to the edge velocity.

_ Thus the asymmetrical waves are propagated v)i"thout any disFersiot_' In a sheet movin_

with velocity w 0 the asymmewic waves will appear at rest ff lines of constant phase are at

art an_e xF'to the direction of flow, provided:

(3-35)
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_ Substituting equation (3-38) into equations (3-26) and (3-29) results in:

. ;:. (co,}2+iku _so ..... __, kJ(7/.0so tant_kso)}= 0

•- 8so ,-,hrks • k3a(-aso. 0'_" (o,'):+_,.o-a:__ o_,+-__,_oo_k_o=o asy==_:_
...a

!i

or,

results in:

X = kso,y = c°'___y=, gr
Us,O ' 2

P Us.OSo

+-:x-{,_--- =o
Symme', _c Case ,-.----__,

y,2+ i_.__SxOXcoth(X}y+_,._.,/.aso coth(X))=w,-_- o
Asymme:ric Case C-,--__-)

Taking the limit of equation (3-42) as X, the thickness, goes to zero results in:

y2 + i0S°x2Y_x + yX_l_x__J.aso X) = 0

y2=0

Taking the limit of equation (3-43) as X goes to zero results in:

Or,

Symmetric Case (2--.'-4')

y2 + '-_-xX--'3s°X v + 7X_/i___9__o.XA_)= 0

Asymmetric Case (3-4_
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the sheet is completely stable in the symmetric mode but not in the asymmen"ic

mode. In the asymmetric mode, in the limiting case, co can be found by substituting

(3-45) and (3-41) into equa6on (3-24) as:
ius.o _so

i" (.0=- +kUs0
_: so _x 't.

making use of equation (3-38):

fore the imaMnary part of co is _ual to:
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Chapter 4

Description of Experimental Apparatus and Study of Hole Formation

• h

A :est rig for producing a liquid sh_t of silicon oiI in a v_uum at NASA Lewis

Research Center was constn.:c:ed previous to this study. This fac;dity was constr'-c:ed to

study the fluid dynamics and emissivity of a thin liquid sheea This test rig produces a

relatively Iarge liquid sheet., on the order of ten feet long. The sheet was contain_ m a

solid stee! tank in order to hold a vacuum. The only way of viewing the sheet was to es_'ner

look through small windows at the top of the tank or look at r.he videos produced b?' a sr,'-__ai!

camera with the ability to move up and down and around inside the tank, either way ordy a

small pot-don of the sheet was visible at any one time.

The sheets formed in this rig appeared to be unstable. That is, when the sheet was

observed 'k would appear to flicker. The sheet a/so wo_d splatter near the bottom, mmU_mg

it vimmllv impossibIe to pIace a probe near the bottom of the sheet to take any temperamre_

measurements to determine the emissivity. An investigation was undertaken in ord_" to

determine the source of this instability. High speed film loops were taken of the sheet.

Observation of these high speed t-tim loops revealed that holes formed in the sheet and that

they grew as they went down the sheet.

In order to further investigate the formation of these holes and to study liquid sheet

flows, three small scale test rigs were made. The sheets in these test rigs were formed with

water, in air, and under the influence ofgravky. The main advantage the these test rigs

was that the entire sheet was visible at all times.



_? 4 1 - Operation of the Small Scale Test Rigs

A schematic of the general design of the small scale test figs is shown in Figxu-e 4-

1. The test fi_ basically consist of a plenum or tank with a small slit in the bottom When

the tank is pressurized with water, the water is forced through the slit and the sheet forms,

Valve A

Fitter

8 a
--°

Air Esca: _e and Water Overflow

Plentx'n

Water Out

Valve C

Valve D

Sheet

Water Collector

_J

/
/

Figure 4-1 Schematic of the Small Scale Test Rig

"s
• • +. : . . ...i 'j'.; " .

- i • ....n_--



._'2_i The wat=- from the sheet is then collected in a bucket or water, collector which is equi_Ted

IZ4 with a &-',._in.
_'_

'. Tap water flows into tSe system through Valve A. Valve A is used to control the

.12"

_ai7

mass flow rate through the system and the pressure in the plenum. After the water flows

through Valve A, the water is ran through a filter rated to remove any particulates larger

than I0 _m. During the time the plenum is fillic!.g up with water, Valve C is shut and

Valves B _,d D are open. Valve B allows for air to escape from the plenum during the t"fll-

up time. Once the tank is full, water flows out through Valve B. At this time, Valve B is

closed and the plenum begins to pressurize and a liquid sheet bc_ns to form, The water

from the overflow and the liquid sheet is collected in the water collector. Valve D is almost

always left open, when it is closed water collects in the bucket and mass flow rate

measurements can be obtained. When ',.he testing is over,, Valve A is closed and Valves B

and C are opened to allow for water to drmn out of the tank and air to enter the tank.

4.2 - Differences in the Three Small Scale Test Rigs

The differences in the ti-,ree test figs are due to the size of the plenums and the size

of the slits that they run with. In the first test rig, the volume of the plenum was 66 in 3.

The slits all had widths of 1.345 in. and thicknesses of either 0.0021 in., 0.0032 in., or

0.0040 in. The second test rig used the same three slits as the first, but the volume of its

plenum was 1,900 in3. The third test rig had the unique feature of an adjustable thickness

on the slit. The slits on this test rig were 8 in. long and the thicknesses were adjustable

from 0.0200 in. to 0.0015 in. Also, an impediment could be placed in the slit in order to

form sheets less than 8 in. wide. The volume on this plenum was 3,910 in 3.

Figure 4-2 is a photograph of the third small scale test rig, showing the large

plenum and the sheet at the base of the plenum. Figure 4-3 shows a close-up phctograph

of the adjustable slit from the third test rig. The slit is 8 in. long and the positioner has a
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Figure 4-2 Photo_"a._h of the Third Small Scale Test Rig

digital readout, capable of showing tke thickness of the slit to accuracy of 0.00005 in.

Since it was nccez.sary to produce both sides of the slit 8 in. long, parallel, and :o the

machining or thi._ :Ait.

i

.'%,l ,
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Fig'_°e. a-3 Photo_ph of _e Adjus:able S[k

4.3 - Experimental Procedure for Determining the Surface Area Lost Due

to Hole Formation

_ .r:-

,. -

' _, "1" .

.;_, _,

4', ', ',X,'

,'. , ;_-

_,_ i;_ :_;:_"- of the same hole further down the sheec all on one photograph. Figure 4-5 shows a t'/'pical

f%" ' " ':'_, till'.: :," ,,

The first test rig, equiFped with the 0.0032 in. thick slit, was used for determining

the surface area lost due to hoIe formation. The photographic technique employed for

determining the surface area lost due to hole formation is shown in Figure 4-4. A camem

was set up directly in front of the sheet and a strobe light was set up off center behind tee

sheet, the dashed line represents the line of sight of the camera. The strobe was placed of,"

center so the area directly behind the sheet would not be flooded with light. The camera

used was a Pentax tCX and the film was Kodak TMAX400. The shutter speed on tee

camera was set to 1/60 of a second and the strobe was set to 18,000 flashes per mir,.ute.

This resu/ted in there being 5 images of the sheet on each frame of film. Therefore, i: ',','as

possible to see an image of a hole near the top of the sheet and see four consecu:ive irr'.;ges



,_,f:k=_ ' _" 4_a -'[_'l ', °_'- • "

58

Strobe Light

Figx_re 4-4 Top View of the Experimen_ Setup for Hole Formation

one of these photographs, showing an image of a hole near the top of the sheer and three

more consecutive images of the same hole as it goes through the sheet.

,' i_.
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Figure 4-5 Photograph of a Sheet Experiencing Hole Formation

Slide'.; '.,,'ere made of each of these photographs. These slides 'acre then projec':ed

on to a dig,iti±.":.g pad. The outline._ of the sheet :rod the holes were uhen digitized and t2_=

areas of the :;he'_-: and the holes were computed usir_g the Autocad ,@ ';oftware package.

From these areas the percent of surface area lost could be calculated. This was done f_" a

number of sheet lengths :rod operating pressures. The results are shown in Figure 4-6.
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Fig'ufe 4-6 clearly shows the random appearance of holes in the sheet. Even though

there was a genera/increase in surface area lost as the pressure,, was increased, the:'e a/so

<
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Figure 4-6 Surface Area Lost vs. Line Pressure for the First Test Rig, '_ = G.0032 in.

were distinct exceptions to this rule. This led to the hypothesis that the cause of the holes

was not directly linked to the fluid dynamics of the sheet flow a/one. In addi6on, the holes

never exhibited any pattern for where they appeared. Holes appeared on the Ieft, right, and

center of the sheet. Due to the apparent random nature of their occur/'ence, it was su_pz.cted

that upstream disturbances might be the cause of the holes.

For this reason, the second test rig was constructed. With such a large plenum it

was assured that the waterabove the slit would be nearly stagnant and the pressure

fluctuations would be greatly minimized. When photographs were taken of the s?,est with

._ ,_ the new plenum attached it was rev ed that no holes were ever formed for all the
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Thus it was concluded that upstream fluctuations were the cause of the hoIe

for'marion. This Hnding necessitated the construction of a new plenum for the test rig at

NASA Lewis. Since the test rig at NASA was undergoing renovations the experiments

performed on the liquid sheet and the data presented in the following chapters w_re

generated by the second and third small sca/e t_st rigs.



Chapter 5

Experimental Investigation of Liquid SheetFlow

ThreeinteresEngexperimentalstudieswereconductedonliquid sheetflows. In

first, thesheetlen_2aoversLitwidthratiowasdeterm._,edfor ahumor of slit sizesande:

velocities.Theresultsfrom thiscouldbecomparedto IengT.hoverwidthvaluescalc_e..

in Chapter2, Section1. In thesecondstudy,thewidths andthicknessesof theedge

cylind.-'rsweremeasuredandcomparedto thecomputergeneratedresultsof Chapter2,

Section2. In thethird studytheeffectsof airresistanceon thesheetwasstudied.

5.1 - Determining the Sheet Length Over SHt Width Ratio

Thesecondtestrig, equippedwith the0.0021in. and0.0332in. slits, wasusedf:

calculatingthesheetlengthoverslit widthratio:Since_e watercol.lectoron thetestrig

wassetupwithavalve onthedraintheonlyequipmentnecessaryforthecalculationof u_

sheet length over the slit width ratio was a millimeter scale. The water collector was

graduated with two lines. The volume of water between the two lines was equal to five

Hters. When, a steady sheet was produced, Valve D (see Figure 4-I) on the water collec:c:-

was closed. Once the water reached the first line on the inside of the water collector a

stopwatch was started. While the bucket was t-filing up, the length of the sheet was

measured with the millimeter scale. When the height of the water reached the second :lir._,

the stopwatch was turned off. Knowing the amount of water collected and the time k tc_k

to collect it, the volumetric flow rate could be calculated. Thus, the sheet length over siit

width ratio could be determined for various flow rates.
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5.2 - Determining the Edge Cylinder Cross-Sectional Shape

5.2.1 - Description of Experimental Setup

The photographic technique employed is shown in Fi_zre 5- I. The dashed Iine

represents the ILr:e of sight of the ca.m, era. A beam splitter and _'o 12-_zntfac_ mirrcrrs were

used in order to view both the front and side views of the sheet on ,,he same photograph.

The tip of a wire was placed near the sheet edge in order to insure that both images on the

photograph were at the same point on the cylinder. Due to the sheet going away f'mm the

camera ha the side view, there was only one place in this view that was in focus. As a

result, the camera was set on the m=_xzI with the ability to move forward and back.

Realizing that if the focus on the ca.mem is not adjusted, then any pI_e that is in focus will

have the same degree of magnification as any other place that is in focus. It was then

possible to take a picture of the front view in focus, rope the lens to insure a constant focaI

length, and move the camera forwards and back in order to get a number, of points a/ong

the edge view of the sheet in focus.

Edge Cylinder and Sheet

............. -(3
!

!

!

!

I

!

!

!

I

!

!

!

Beam Splitter i ............ Mirror

!

!

Figure 5-1

CarrI_--a

Top View of the Photographic Technique for the Edge Cylinders
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ThecamerausedwasaNikon F4equippedwit.ha fullyextendedbe_owsanda

200ramNikonlens,",,,-ihha+2diapterclose-uplens.KodakTMAX 400 black and white

film was used. The second test rig, equipped with ff',e 0.C02! in., 0.0032 in., and 0.004I_

in. slits, was used. One set of data was collected for each slat.

5.2.2 - Experimental Procedure

Once a full, steady liquid sheet was form_, the length of the sheet was measured.

The wire tip was placed near the edge cylinder, close to the top of the sheet and the distance

from the tip of the wire to the top of the sheet was measm-ed. The camera and mirrors were

placed so the wire would have the same length in e_h view near the bottom of the frame.

Two pictures were taken showing both views, and the lens was fixed in place :o insure an

equai de_ee ofma_caffon for each picture. Two picnzres were then taken showing just

the front view for greater c!arity. Four or five pic,xu'es were taken showing different points

in the edge view in focus. This procedure yielded four or five data points along

appmximately one inch of the edge cylinder.

At this point, a picture of a millimeter scale was taken in order to determine the

degree of ma=_nification of r.he pictures after developing. Then the wire was moved down

allowing the top of the next set of photographs to be at the same point as the bottom of the

previous set. The height of the wire tip was measured again and the next set of pictures

taken. A picture of the millimeter scale was taken after each set of pictures to insure the

de_ee of ma_ification was not chanNng. The length of the sheet was periodically

measured to insure that the length of the sheet was staying constant,

Enlarged photographs were made for taking the ? and rim= measurements. "lq::,

pictures of the scale were measured with a millimeter scale to determine the degree of

magnification. Knowing the position of the wire tip, the blown-up photograph of the scale.

could be used to determine the height of the point that appeared to be in focus in each of tg:e

,a%
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, edge shots. The cyhnder wqdths and thicknesses were measured to a resolution ofa 6,1th
,,_

of an inch.

5.3 - Determining the Effects of Air Resistance on the Sheet

The third test rig, with the adjustable sl.ig was used for these experiments. It was

apparent that for some of the sheets formed by this test rig air resistance would have a very.

significmut affect. In cases where the sheet velocity was high and the sheet thickness was

thin, the sheet would catastrophically destruct and form droplets, see Figure 5-2. An

attempt was made to determine under what conditions this would happen and to what extent

it would happen. The critical Ien_h, LCR, is defined as the len_h from the top of the sheet

!:

|:
:_-

._.

,

i
-s

• ¥.)

•
L;

tO the point where the sheet destructs.

-V

L

b w0
X

Z

:';_' ii_; ,
=

Figure 5-2 Schematic of a Sheet Experiencing Air Resistance Break-up



Once a sheet was formed it was noted if it appeared to desm_ct due to _ m_stance

or not. If a sheet was fully in tact, its len_dl, L, and Sickness, "_0,were recorded, ff the

sheet was not fully in tact, its _-idca/length, L_, would bc mco_eA in ad_doa to its

length and thickness. This was done for both 8 and 6 inch wide sheets and a gear number

of _/_ickne.sses and lengths.

r.
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Chapter 6

Experimental Results

6.1 - Sheet length Over Slit Width Ratio ResuIts

Knowing the volumetric flow rate and the dimensions of the slit, the e.-ct velocity, of

the sheet, w 0 (assumed to be uniform), could be calculated by dividing the flow rate by the

area of the slit. Assuming the density of water to be 1,CC@k_m 3 and the coefSdent of

surface tension to be 0.0728 N/m, [8], the Weber number, could be calculated r.?u'ough the

use of equagon (2-i5). IC-iowing the ciimensions of the slit and the len_-_J_ of the sheet, Lhe

sheet length over slit width ratio could be calcuIated. The results for the sheet length over

slit width ratio are plotted against the Weber number in Figure 6-1. The solid Line

represents the analytical prediction given by equation (2-19). The circular data points

from _e 0.0021 in. slit and the square data points are from the 0.0032 in. slit.

6.2 - Edge Cross-Sectional Shape Results

Knowing the dimensions of the slit, the total length of the sheet, and the height r.t

which the data points were taken, the dimensionless cross-sectional area of the edge

cylinder,, A c, could be calculated using equation (2-68). Knowing the degree of

magnification and the dimensions of the slit, rlmax and _ could be calculated using equc, ricn

(2-46). These data and the theoretical predictions are shown graphically in Figures 6-2

through 6-4.
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Figures 6-2, 6-3, and 6-4 reveal a very interesting phenomenon. The cylinder

appears to be oscillating. The cylinder will quickly flatten out and then reform in its

basicatly circular shape. When the cylinder is in its circular shape, the shape is in good

agreement with the theoretical pred/ctions. The details of this cycle are shown in Figtt,'es 6-

5 and 6-6. Figure 6-5 shows a cross-section of the cylinder as one moves down in the z-

direction. Figure 6-6 shows the actual photographs of the cylinder.

The cylinder begins in its nearly circular shape, shown in Figure 6-6a. Due :o ,'.he

• f _', .,

high curvatm'e where the cylinder connects to the sheet, the cylinder quickly flattens cur..

shown near the top of Fibre 6-6b. This appears in Figure 6-5 as an increase in ? and a
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decrease in rlmax. Instead ofsimply regaining its circular shape, the cyfinder goes throug?

a rebuilding process where the cylinder has a peanut-ILke shape. As the area of the cylind."

increases qmax increases but on the inside of the previous cylinder. This can be seen best +

third of the way down the edge view of Figure 6-6b, where the inner part of the cylinder

can be seen behind the outer part of the cylinder. It cannot be seen whether the cyfinder

necks down between the two parts or not. This inner part of the cylinder grows and

en_malfs the outer part to return to its circular shape. T'rds appears in Fi_mare 6-5 as an

increase in Vlmax and a decrease in ?. This is most noticeable in the 0.0040in. slit.
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6.3 - Air Resistance Effects Results

?;

¢.
,.)

• ._

)c

.,t

d

"t

'te

.t(,' '

N

The results for the air resistance effects are shown in Fi_t.we 6-7. In Figure 6-7, the

sheet length and thickness have each been scaled by the slit width. The critical length has

been scaled by the sheet leng'th, in essence giving the percentage of the sheet length that is

still in tact. Any combination of W0/z 0 and _0 that is below or on the I..cR/L = 1 line

was found to be compIetely in tact. Any combination above tha_ line was found to be in

varied degrees destroyed due to air resistance. It can clearly be seen that in order to run a

sheet at a hi___Jawidth to thickness ratio in air one needs to have a shorter sheet.

6.0

5.0

4.0

3.0

2.0

.I

1.0

i ...........................

0.4

LClt/I.. = 1.0 0.9

500.0 I000.0 1500.0 2000.0

W0/x 0

Figure 6-7 Contour Plot for LcR/L
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Chapter 7

Conclusion

Theoretical and expe:-i.menr.a.[ studdes of the flu/d dynamics and stab/J/r/of r.h/n

fiquid s?:eet flows have been c..mTied out ha this thesis. It was shown that this was a surface

tension _'-_ven flow. Due to the surface tension, the sh_t coa.Iesces to a point after a len_&

v _Pt;;

J.

"." 2"

i ._f',

• _.
._,,

, _... ! _.i

;_ ' _i

L and, due to the conservation of mass, the water collects in the edge cylinders giving the

sheet a basically triangular shape. It was shown that gravity had a ne_igible effect on the

shape of the sheet.

A mIafion was developed linking the sheet len_.h over slit width ratio to _e

operating parameters of the she_:, namely:

where:

Wo

w_ " Ow_°z°
g

Thus the shc=tlengthwas found tobc pmlmrfiosaltotheouflctvcloci_/oftheslit.Many

experimentswen: carriedout which demonsn"atcdtha_thisrelationcorrectlyrcprr.scnts

what occurs inthinliquidsheetflow.

A computer pmgr'arnwas developedtodeterminethecross-sectionalshape:of the

cdgc cylindergiventhe¢ross-scct/onalareaof theedge cyl_dcr. Experimentswcr_ carried

outrcvea//ngthattheedge cylinderosci/la_sand thatthecomputer solutionwas only v_l!d

forthelh'n/fingcasethatthecdgc cylinderwas initsbasic_lyc{_cularshape.

A stability ana/ysis was performed on a non-planer liquid sheet. This anaI,,'_is

. ,';_,e-e,
I I I
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showed _c cmstcnce of two c:Li_e.'_nt wave formadons on t.hc c_.m'_, flac _mon o_"t_e

sheer Photographic evidence of the existence of these two wave t'ormadons was also

found. It was determined that the sheet may be unstable where the y-d_ction velocity on

the surface is negative, see _=o-ur_ 3-2. It was shown _at this is a very likely condition on

the edge cylinder near wher_ it connects to the sheet.

A study was conducted to determine the effec_ of air m_ce on the sheer_ It

was shown that the longer the sheet is, the thicker k ne_s to be _n order to stay in tact.

As to the formagon of holes kn the sheet; as found at thc NASA Lewis test rig, it

was found that the holes form due to flucnmdons in pressure ups_-'e...n.m from the slit. When

a large plenum _s placed above the slit, hole formation was elknina:ed.

..

°
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Appendix A

Derivation of the Total Pressure on a Free Curved Fluid Surface

I.nctuding Surf.ace Tension

Fi_m..u"eA-1 shows a di_-e."-enria.l fluid element on the su_,'a_ of a fluid body. The

lengths of the two sides are dsy x and dsy.z. The surface is curved, and the radii of cta'vamre

am shown as Ry x and Rrz. The cceficient of surface tension is cy, therefore, the forces

connecting tl-ds element to the surrounding elements are o'dsTx and o'ds_. Due to the

curvaatm of t.he element these surface tension forces c::eate a force normal to the surface.

Conducting a force balance in the normal direction to the surface results in:

o'dsyx

dsyx

_ds_

Figure A-1 Differential Surface Element

• ....I ...... -'...2,. : "



dey, dey=
Pdsyxdsyz = P_,dsyxds:a. - 2cdsyzsin _- 2o'ds_sin

Applying the small an_e approximation:

t'

results in:

dO,,x dO,,x
sin "= "

2 2

sinde,,.z = dOyz
2 2

/

°.,,

,,,._

a

• :=.
.¢.;

.%.

_._

. ,;.,. o.

. 4..-.
• _*.

'._"i)21

( dOyxPdsy-xdsyz= Padsyxdsyz - 20 dsyz 2

Dividing by dsyxdsyzresultsin:

+ d_x 2do_z)

. (dO,,x dO,,. /
P =P'" cYt_+ dTyz/

or,

P=Pa- (k__x+ I

Sincetheradiiofcurvaturearc definedas[9]:

_2s 82s"

Ox2 3z 2

(I [_s12+ [_sl21_12

the total pressure is equal to:

P=Pa't;
_ _ /

1 _,1 +_11 I

Det-mc the surface tension pressure as:

P_r=-,, +l_l' +[_1=?'=
I 18xl I_zll

,..*,.io "

.;...;

:. :.,#,; :" .

•7.uc#E_;.; z.r..., . : .',.,.
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* AUTHOR: MATTHEW

* DATE: 12-5-91

* TITLE: FLUDY'N

* PURPOSE: DETER.MINES SHEET LENGTHS AND THIC'<I_ESSES USING THE CO___LETE .

* SOLUTION, INCLLUDING GRAVITY, AA-D_ COMPARES THEM TO THE NO

* GR._VI TY SOLUTION

* VARIABLE KEY

* WE : WEBER NUMBER .. *

* FR : FROUDE NUMBER -" *

* TAUB : TAU-BAR

* TIMEB : T I.'__E- B A_

* ZB : Z - B .'-__

* ZBNOG : Z-BA__ WITH NO GRAVITY

* NIl : COEFFICIENT IN THE X-BAR EQUATION

* ALL OTHER VAR_-ABLES, TAUB'S AND DIF'S, A_R_E JUST DUMMY V__RIABLES

* IN THE ITERAT"'TE ROUTINE TO SOLVE FOR TAU--=AR *

S. MCMASTER

* D E C L_RE V_RIABLES

REAL WE, XB, DTAUB, TAUB!, TAUB2, DIFI, DIF2, ._[U,TAUB, TAUBL, TAU-BR, TAUBC,

+DIFL, DIFR, DIFC, FR, TIMEB, ZH, ZBNOG

INTEGER I, J

* SET STEP SIZE FOR THE ROOT FINDER ROUTINE FOR TAUBAR *

DTAUB = 0.05

WRITE (8, *) '

WRITE(8,*)

WRITE (8, *)

WRITE (8, *)

WRITE (8, *)

WRITE (8, *)

WRITE (8, *)

'WRITE (8, *)

WRITE(8,*)

WRITE (8, *)

WRITE (8, *)

WRITE (8, *) '

',TRITE (8, *) '

WRITE (8,*) '

+BAR'

WRITE (8, *)

DATA FOR SHEET

IN THE SMALL SCALE LSR.'

!

THE FOLLOWING PARAMETERS WERE

!

SLIT WIDTH: 0.03416 M'

SLIT THICKNESS: 8.128E-5 M'

DENSITY: I000 KG/M^3 '

SURFACE TENSION: 7.282E-2 N/M'

GRAVITY: 9.81 M/S^2 '

!

WEBER NUMBERS START AT 20

WEBER FROUDE X-BAR

LENGTHS AND THICKNESSES FOR WATER'

USED : '

AND GO THROUGH 500'

TAUBAR Z-BAR

' NUMBER NUMBER

Z_

NO
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WRITE (8,*) ' ...... ---

+ ...... !

WR[TE (8, *) ' '

" STA:qT LOOP FOR WE FKC. TM. 20 TO 500 BY 20 *

DO I0, I = 1,25

WE = 20.0"I

F._ :" 2.6735"W

* DEF--.'rE NU = (FR_SQKT2) / (3_SQRTWE) *

h_ = 1.2603*SQRT (_'E)

* ST._T LOOP FOR X-B_ FRCM 1 TO 0 BY 0.1 *

DO 20, J = 10,0,-1

X_ = 0.1*J

* FIh_ Z-BAR WITH NO G?A';[TY FOR THE GIveN WE A2_ X-B_-_ *

ZBNOG = SQRT(WE/8.0) - XB*SQRT(WE/8.0)

* BEGZN THE ITERATIVE RCCT FI,N-DING TECHNIQUE TO FIh_ TAU-BAR GIVE_ WE "

* AND X-BAR *

30

TAU-BI = 0.05

TAUB2 = TAUBI + DTAUB

DIFI = 1.0 - NU*(TAUB!**(-I.5) + 3.0*TAUBI**(-0.5) - 4.0) - XB

DIF2 - 1.0 - NU*(TAUB2**(-I.5) + 3.0*TAUB2**(-0.5) - 4.0) - XB

IF (DIFI .EQ. 0.0) THEN

TAUB = TAUBI

ELSE iF (DIF2 .EQ. 0.0) THEN

TAUB = TAUB2

ELSE IF (DIFI*DIF2 .LT. 0.0) THEN

GOTO 40

ELSE

TAUBI = TAUB2

GOTO 30

END IF

40

50

TAUBL - TAUB1

TAUBK - TAUB2

TAUBC - (TAUBL + TAUBR)/2.0

DIFL - 1.0 - NU*(TAUBL**(-I.5) + 3.0*TAUBL*"(-0.5) - 4.0) - X3

DIFC - 1.0 - NU*(TAUHC**(-I.5) + 3.0*TAUBC**(-0.5) - 4.0) - X3

DIFR - 1.0 - _(TAUBR**(-I.5) + 3.0*TAUBK** (-0 .5) - 4.0) - XB
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IF (ABS(DIFC) .LT.

TAUB " TAUBC

ELSE IF (DIFL*DIFC

TAUBR = TAUBC

GOTO 50

ELSE

TAUBL = TAUBC

GOTO 50

F_-'_'DIF

0.0001) THEN

.LT. 0.0) THEN

***********************************************************************,

* SUBSTITUTE THE FOUND VALUE FOR TAU-BAR INTO THE TIME-BAR EQUATZON *

T--MEB = (FR*(TAUB** (-!.0) - LCG(TAUB) - 1.0)) /4.0

* SL_STITUTE THE VALUE- FOR TIM_-BAR INT0 THE Z-BAR EQUATION *

ZB = (TIMEB*TIMEB)/(2.0*FR) + TI_B

IF (XB .EQ. 1.0) ZB I' 0.0

* OUTPUT THE DATA, E_'CD THE LCOPS, _ND TERMINATE THE PRCGRA_M *

55 FCR_MAT (iX, F8.2, FI0.3, F8.2, FII.5, FII.5,FII.5)

WRITE (8, 55) WE, FR, XB, TAUB, ZB, ZBNCG

20 CONTINUE

WRTTE (8, *)

I0 CCNTINUE

STCP

E}_
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* AUTHOR: ._.ATTHEW S. MCMASTER *

* DATE: 12-5-91 *

* TITLE: SHAPE *

* PURPOSE: TO DETER_MINE THE CKCSS-SECTIONAL SHAPE CF THE SHEET *

* ASSUMING PROPORTIONAL SECO_N'D DERIVATIVES *

* USING A FOURTH-ORDER RIvaGE KUTTA TECHNIQUE *

* VARIABLE KEY *

* ETA : ETA ARRAY *-..
* THETA : DETA/DXl ARILAY *

* XI : XI ARRAY *

* ACBAR : AC-BAR *

': Q : TAU/RE *

* ALPHA : ALPHA *

" ABA_ : A-BAR *

_' ET_ : ETA-MAX *

I" ELLIP : ELLIPTICITY, 2*ETA-M-AX/K-BAR *

D E C LA-_E V._R I_ LE S *

REAL ETA, THETA, XI, AC=-.2--_,Q, ALPHA, ABAR, ETAMAX, DX--, DIF, FETA, FTHETA,

+F, K!, i'[2,K3, K4, CI, C2, C3, C4, ELLIP

INTEGER I, J

DI.MENSION ETA(0:6000) ,THETA(0:6000),XI(0:6000)

* SET AC_-_, Q, ALPHA, AND THE XI _R/tAY . *

ACBAP, = 2000.0

Q = 1.1952/ACBAR**0.3813

ALPHA = -0.7571 + 0.1206*LOG(ACBAR)

DXI = 0.05

DO 2, I = 0,6000

X_(I) = I*DXI

CONTINUE

* USING THE RUNGE-KUTTA TECHNIQUE DETERMINE THE ETA __N'D THETA ARRAY3 *

ETA(0) " 0.0

ETA(l) - (DXI*((4.0*(I+ALPHA))/Q- DXI))**0.5

THETA(0) = 0.0

THETA(!) =" ((2.0*(1.0+ALPHA))/Q - DXI)/ETA(1)

ABAR -- (ETA(I) _DXI)/2.0

DO I0, I " 2, 6000

K1 = THETA(I-I)

Cl =" F(ETA(I-I),THETA(I-I),ABAR, ACBAR, ALPHA,Q)

K2- THETA(I-I) + (DXI"CI)/2.0
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+

+

C2- F(ETA(I-I) + (DXI*KI)/2.0,THETA(I-I) + (DXI*CI)/2.0,ABAR,

ACBAR, ALPHA, Q)

K3 - THETA(I-!) + (DXI*C2) /2.0

C3-. F(ETA(I-I) + (DXI*K2)/2.0,THETA(I-I) + (DXI*C2)/2.0,ABAR,

ACBAR, ALPHA, Q)

K4 = THETA(I-I) + (DXI*C3)

C4 = F(ETA(I-1) + (DXI*K3) ,THETA([-I) + (DXI_C3),ABAR, ACB._,

ALPHA, Q)

ETA(1) = ETA(I-l) + DXI"(KI + 2.0"K2 + 2.0"K3 + K4)/6.0

THETA(I) = THETA(I-I) + DXI*(C! + 2.0"C2 + 2.0"C3 + C4)/6.0

+

+

IF (ETA(I) .LT. ETA(I-l) .AND. ETA(I-2) .LT. ETA(I-l) .CR. ETA

(I) .EQ. ETA(I-l) .AND. ETA.6I-2) .LT. ETA(I-l)) ETA/_AX =-ETA

(I-l)

IF (ETA(I) .GT. ETA(I-l) .A_\'D. ETA(I-2) .GT. ETA{I-l) .OR. ETA

(I) .EQ. ETA(---l) .AND. ETA(I-2) .GT. ETA(I-l)) GOTO 30

ABAR = ABAR + DXI*(ETA(I) + ETA(I-I))/2.0

I0 CONTINUE

* CHECK THE BOUNDARY CONDITION THAT AT THE MINI-._LLM ETA SHOULD EQUAL *

* ONE _ CHANGE ALPHA UNTIL ETA DOES EQUAL ONE *

3O DIF -- 1.0 - ETA(I-I)

IF (ABS(DIF) .LT. 0.0001) GGTO 35

ALPHA = ALPHA + DIF/20.0

C-OTO 1

* CHECK THE CONDITION THAT AT THE MINIMUM ABAR SHOULD EQUAL ACBA_ _ND *

* CH_-_GE Q UNTIL ABAR DOES EQUAL AC_AR *

35 DfF = (ACBAR - ABA__)

IF (A_BS(DIF)/ACBA-:_ .LT. 0.0001) GOTO 37

Q = Q + DIF/30000.0

GOTO 1

************************************************************************

* CALC-jLATE THE ELLIPTICITY, OUTPUT THE DATA, AND TERMINATE PROGP.A/_ *

37 ELLIP = (2.0*ETAM-AX)/XI(I-I)

38 FCP/_AT (IX, F8.2, FI2.4, FI2.4)

W'AITE (8, *) 'THE FOLLOWING ARE THE RESULTS FOR ETAMAX, B.BAR, A/qD'

W_.ITE (8,*) '2*ETAMAX/RBAR, GIVEN THE VALUE FOR ACBAR. ALSO'

WRITE (8, *) 'GIVEN IS THE VALUES FOR TAU/RE AND ALPHA NECESSARY'

WRITE (8,*) 'TO OBTAIN THE KESULT. ALSO GIVEN IS A TABLE OF'

W'_ITE (8, ") 'SAMPLE VALUES OF ETA AND DETA/DXI FOR THE SHGW_'

WRITE (8,*) 'VALUES OF XI.'

WRITE (8,*) ' '

40 FORMAT (IX,A, F8.3)

41 FORMAT (IX, A, Fg. 4)

42 FOP-MAT (IX, A, FI0.5)

WRITE (8,40) 'ACBAR- ',ACBAR

i II
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WRITE (8,40) 'ETAMAX"',ETAMAX

WRITE (8,40) 'RBAR '',XI(I-1)

WRITE (8,41) '2*ETAMAX/RBAR '',ELLIP

WRITE (8,42) 'TAU/RE -',Q

WRITE (8,42) 'ALPHA '',ALPHA

WRITE (8,*) ' '

WRITE (8,*) ' XI ETA

WRITE (8,*) ' .....

DO 22, J " 0,I-I,20

WRITE (8,38) XI(J),ETA(J),THETA(J)

CCNTINUE

,L r +"i '<.

+ Sr_ ,., z.. o ,

DETA/DXI'

STCP ..

* FUNCTICN F SUBPROGRAM *

* F IS BASICLY THE EQUAT!CN BEING SOLVED *

FUNCT!CN F (FETA, FTHETA, ABAR, ACBAR, ALPHA, Q)

REAL FETA, FTHETA, ABAR, ALPHA, Q, F, ACBAR

F =" ( (( (ABAR*ABA_q* (I. 0 + FTHETA*FTHETA) ) / (---ETA*FETA*ACBA__

+ *ACBAR) - Q)*(I.0 + FTHETA*FTHETA)**I.5)/(2.0*(I.0 + ALP-U-%) ))

END

. ;+

lu";:
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AUTHCK- MATTHEW S. MC___.STEK

DATE: _.-*'_6-91

TITLE: SHAPE2

PURPC S E : TO DETER.MINE THE CROSS-SECTIONAL SHAPE OF THE SHEET

ASSL.'MING A CCNSTA_NT SECOND DERIVATIVE

* USING A FOURTH ORDER KUNGE-KUTTA TEC._LN._QUE

* VA.R I A-_ LE KEY .

* ETA : ETA AR_NAY . ,,

* THETA : DETA/DXI A/LAY " *

* XI : XI ARRAY *

* ACBAR : AC- BA._ *

* Q : TAU/R_ *

* R : D 2:_TA/D_:..A __ _'

* ABAR : A-BAR *

* ETAMA-N : ETA-MAX *

* ELLIP : ELLIPTICITY, 2*ETA-MAX/R-BAR *

* DE CL_2_ VARIABLES *

R_.'--L ETA, THETA, A.BAR, Q, ACBA.R, R, DXI, DIF, ETAMAX, F, XI, FETA, FTHETA,

+KI,K2,K3,K4,C!,C2,C3,C4,ELL:P

INTEGER I, J

Di-x"-----NSION ETA(0:6000),THETA(0:6000),XI(0:6000)

SET AC_-R, Q, R, AND THE XI AN/LAY *

ACB_-R = 2000.0

Q = 403.6506/ACB_**!.3278

R = -0.4827 + 0.0791*LGG(ACBAR)

DXI = 0.05

DO 2, I = 0,6000

XI(I) _ I*DXl

CONTINUE

* USING THE RUNGE-KUTTA TECHNIQUE DETERMINE THE ETA AND THETA ARP_AYS *

ETA(0) = 0.0

ETA(l) - (DXI*(4.0/Q - DXI))**0.5

THETA(0) " 0.0

THETA(1) " (2.0/Q - DXI)/ETA(1)

ABA__ =" (ETA(1)*DXI)/2.0

DO 10, I " 2,6000

K1 " THETA(I-I)

Cl " F(ETA(I-I),THETA(I-I),ABAR, ACBAR, R,Q)

K2 _" THETA(I-1) + (DXI*CI)/2.0
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C2 - F(ETA(I-I) + (DXI*KI)/2.0,THETA(I-!) - _---/Z["--- _-

ACBAR, R, Q)

K3 = THETA(I-I) + (DXIfC2) /2.0

C3 = F(ETA(I-I) + (._XI*'<2)/2.0,THETA(I-I_ - _'_ " -=z=,

ACBA_R, R, Q)

K4 = THETA(!-I) + (._X-*C3)

C4- F(ETA(2-1) + (ZXI'K3),THETA(I-!) + _"_;,'- ....

R,Q)

ETA(I) =" ETA(I-l) + DXI*(K! + 2.0"K2 + 2. _ - "

THETA(1) "- THETA(_--!) + DXI*(CI + 2.0"C2 --.1_ ---" :_-

IF (ETA(I) .LT. ETA(I-I) .A.'_'D.ETA(I-2) - _ - -- -----a

(1) .EQ. ETA(I-l) ..a_','D.ETA(I-2) .LT. -TAr.Z-I_: ,t-

(r-l) -.
IF (ETA(1) .GT. ETA:_--l) .A_\"D ETA( _" "

(!) .EQ. ETA(I-l) .32,.-3.ETA(I-2) .GT. ETAIZ-L ____-L'Z_"-

A_AR _ ABAR + DX_--(ETA(X) + ETA(Z-I))/2.2

40

I0 CONTINUE

* CHECK THE BOU_'NDARY CONDITION TM_T AT TH_E MINI.kK..-X'_: .... *

* C_ A_ND CHANGE R U_TIL ETA _CES EQU_ C_

3O D!F = !.0 - ETA(I-l)

IF (ABS(DIF) .LT. 0.O$Cl)

R = R - DIF/30.0

C-OTO 1

C-CTO 35

* CHECK THE CONDITION TKAT ._T -u---MINI_..-M A__AR SHCU-.2. - .-=--_-_=._ "

* CH_2;GE Q UNTIL A/BAR DOES E_L-;_ ACBAR

35 D_F = ACBAR - ABAR

"= (ABS (DIF)/ACB___ _- 3.0001)

Q = Q - DIE/35000.0

GOTO 1

C-OF0 37

* CALCULATE THE ELLIPTICITY, CUTPUT THE DATA, AND .____ -

37 ELLIP = (2.0*ETAMAX)/X:(_--!)

38 FORMAT (iX, F8.2, F!2.4, F!2.4)

WRITE (8,*)

WRITE (8,*)

WRITE (8,*)

WRITE (8,*)

WRITE (8,*)

WRITE (8,*)

WRITE (8,*)

FOF24AT

EOI:LMAT

FO _-MAT

WRITE

'THE FOLLCWT-A'G A.:(ETHE RESULTS FOR _ _---.

'2*ETAMAX/Rg_%-'q, GIVEN T._LKVALUE FOR _-n_.

'GIVEN IS T._"_VALUES FOR TAU/RE A.'_3--"_"":'-=---

'NECESSARY TO OBTAIN THE RESULT. _ _ _

'TABL_- OF SA.V_LE VALUES OF ETA AND _LT.X_ _%'_'__-._

'SHOWN VALUF.S OF Xl.'
e !

(IX, A, F8.3)

(IX, A, Fg. 4)

(IX, A, El0.5)

(8,40) 'ACSAR = ',.%C3AR
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WR_TE (8,40) 'ETAMAX "',ETAMAX

WRITE (8,40) '_dBAR "',XI(I-I)

WRrTE (8,41) '2*ETA_VukX/KBAR -' , ELLIP

WRITE (8,42) 'TAU/KE "',Q

WRITE (8,42) 'D^2ETA/DZETA"2 '',K

WRITE (8,*) ' '

WRITE (8,*) ' XI ETA

WRITE (8,*) ' .....

DO 22, J " 0,1-1,20

WRITE (8,38) XI(J),ETA(J),THETA(J)

CO_INUE

DETA/DXT '

T

STOP ..
END --

* FUNCT!CN F SUBPROGRAM *

* F IS BASICLY THE EQUATION BEING SOLV'E_D t

FUNCTION F (FETA, FTHETA, ABAR, ACBAR, R, Q)

+

REAL FETA, FTHETA, ABA._, R, Q, F, ACBAR

END

F = ( ( (ABAR*ABA._* (!. 0 + FTHETA*FTHETA) ) / (FETA*FETA*ACBAR*

ACBAR) - Q)*(I.0 + FTHETA*FTHETA)**I.5)/2.0 - R
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